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Exercises & Examples 1

Recall the definition of a smooth polytope. Draw a smooth polygon P .

Exercise 1.1

Write down numbers next to the lattice points of P which define a Q-valued point p of
XP . Express your point in the (affine) coordinates corresponding to different vertices of
P . Can you find a general formula for this coordinate change?

Find a vertex where p does not belong to the corresponding affine chart. If you cannot
find such a vertex, pick a new point q ∈ XP so that you can.

Repeat with a different polygon.

Exercise 1.2

Specify a torus element t ∈ T ⟳ XP , and determine t.p ∈ XP .

For a face F of P pick two points p and q from the corresponding T -orbit. Then find
an element t ∈ T so that t.p = q. Repeat for faces of different dimensions.

For an edge F of P choose p ∈ T and q in the T -orbit corresponding to F . Can you
find a sequence (tk)k≥0 in T so that limk→∞ tk.p = q?

Exercise 1.3

Choose a lattice basis for M and describe the torus action in coordinates at different
vertices.

Exercise 1.4

We have two different descriptions of XP : One as a space glued from affine spaces, one
for each vertex, and the other description as a subset of projective space.

What could go wrong if we drop the smoothness requirement? In other words, what
property is needed to ensure that the two spaces agree?

Convince yourself that it never goes wrong for polygons, but it does go wrong for

P = conv
[
0 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1
0 0 0 1 1 1 8 9

]
.

Exercise 1.5

Prove that you criterion from the previous exercise is indeed a characterization.



Exercise 1.6

Consider two lattices N ⊂ V , N ′ ⊂ V ′, and two pointed rational cones σ ⊂ V , σ′ ⊂ V ′

with polar duals σ∨ ⊆ V ∗, σ′∨ ⊆ V ′∗, respectively. Suppose Φ: N → N ′ is linear so
that Φ(σ) ⊆ σ′. Use the transpose Φt : M ′ → M to define induced maps

Xσ∨ Xσ′∨

T T ′

Φt

Φt

Exercise 1.7

Find the maps induced by the following Φ’s.

Over the field R, you should get maps R → R2, R2 → R2, and R → R2. Draw a
picture of the two parameterized curves R→ R2.

Exercise 1.8

Interpret an integral linear map P ↠ [0, ℓ] as a family of rational curves of degree ℓ

P1 XP

B

in XP over a base B of dimension dimXP − 1. Interpret the lattice width of P in this
language.

Find a P and a rational curve P1 ↪→ XP of degree strictly smaller that P ’s lattice width.
Can your curve move in a family?

Exercise 1.9

Let f ∈ k[x, y, z] be an irreducible homogeneous polynomial of degree D, and consider
its vanishing locus X ⊂ P2. Then the homogeneous coordinate ring R = k[x, y, z]/(f)
of X is graded: R =

⊕
d≥0Rd. Show that dimkRd ∼ D · d for d → ∞, and convince

yourself that D = #(X ∩H) where H ⊂ P2 is a general hyperplane (aka line).

Exercise 1.10

Suppose X ⊂ PN−1 is an irreducible subvariety of dimension n with homogeneous
coordinate ring R =

⊕
d≥0Rd. Show that there is an integer D so that n! · dimkRd ∼

D · dn for d → ∞.

Convince yourself that D = #(X ∩ U) where U ⊂ PN−1 is a general subspace of
codimension n.



Exercise 1.11

Given lattice polytopes P1, . . . , Pd ⊂ Rd, consider general (Laurent-)polynomials f1, . . . , fd ∈
k[x±1

1 , . . . x±1
d ]. These will have finitely common zeros in (k×)d. Call the number of these

zeros M(P1, . . . , Pd). (You have to believe that the number does not depend on the f ’s
as long as they are generic enough and k = k̄.)

Show that M(P1 + P ′
1, P2, . . . , Pd) = M(P1, . . . , Pd) +M(P ′

1, . . . , Pd).

Exercises & Examples 2

Exercise 2.1

Let I ⊂ k[x1, . . . , xN ] be an ideal, J = inω(I) a monomial initial ideal with Gröbner
basis G and standard monomials S (monomials not in J). Then polynomial division
writes every f ∈ k[x1, . . . , xN ] modulo G as a k-linear combination of monomials in S.

Show that this induces an isomorphism k[x1, . . . , xN ]/I → kS of k-vector spaces.

Exercise 2.2

Show x3 − y2 ∈ (x− y, x2 − y).

Exercise 2.3

Find as many equations as possible satisfied by XP ⊂ P5 for the rectangle P =
conv [ 0 2 0 2

0 0 1 1 ]. Did you find enough to generate the ideal of all such polynomials?

Write down a t ∈ T as in Exercise 1.2 and convince yourself that t.x satisfies your
equations whenever x does.

Exercise 2.4

Find as many equations as possible satisfied byXP ⊂ P3 for the segment P = conv [0, 3],
so A = [ 0 1 2 3

1 1 1 1 ]. Find two general weights ω, ω′ ∈ RA which induce the same triangu-
lation sdω(A) = sdω′(A) of P , but yield different initial ideals inω(IA) ̸= inω′(IA).

We can restrict to ω0 = ω3 = 0. Then, draw a picture of the regions of the ω1-ω2-plane
where sdω(A) is constant. Do the same for the regions where

Exercise 2.5

Revisit Exercise 2.1 in the examples of Exercise 2.4.

Exercise 2.6

For P = conv [ 0 1 2
0 2 1 ] show that the corresponding toric ideal IA is not generated in

degree 2.

Exercise 2.7

Let P be a lattice polygon with at least 4 boundary lattice points. Show that IA is
quadratically generated. Show that it even has a quadratic Gröbner basis.



Exercise 2.8

Given natural numbers m,n, let A ∈ Rmn×m+n be the matrix which sends a matrix
A ∈ Rmn to its row and column sums in Rm+n.

Show that the toric ideal IA is generated by moves of the form
...

...
· · · 1 · · · −1 · · ·

...
...

· · · −1 · · · 1 · · ·
...

...



Exercise 2.9

Let A be the indicator vectors of the bases of a matroid M . We call M quadratic if
IA is quadratically generated. Reformulate being quadratic as an exchange axiom in
combinatorial matroid language.

Can you find a matroid which is not quadratic?


